
COTS-based OO-Component Approach for
Software Inter-operability and Reuse

(Software Systems Engineering Methodology)

Laverne Hall & ReUse/OO-Component Team
Jet Propulsion Laboratory / California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109-8099, USA

Phone: 818 393–5430
Laverne.Hall@jpl.nasa.gov

Abstract - The purpose of this research and study paper is to
provide a summary description and results of rapid
development accomplishments at NASA/JPL in the area of
advanced distributed computing technology using a
Commercial-Off-The-Shelf(COTS)-based object-oriented
component approach to open inter-operable software
systems development and software reuse (i.e., COTS-based
software components in action).

Distributed COTS middleware (such as CORBA ACE-
TAO) coupled with well-defined layered software
architecture can be used to support infrastructure
development for object-oriented component technology. It
can provide a framework for component development,
legacy incorporation, and reuse and inter-operability across
subsystems. With detailed systems engineering, it can
reduce development, testing, and maintenance relative to
life-cycle cost and time.

This paper will 1) address what is meant by the terminology
object-oriented (OO) component software and how object
component technology can be used in scientific software
development and operational environments, 2) give an
overview of the component-based implementation strategy
and how it relates to infrastructure support of software
architectures promoting reuse/inter-operability, and 3)
evaluate the benefits or lessons learned from this approach
(such as complexity of integration and avoiding duplication
or re-development efforts).

TABLE OF CONTENTS

1. INTRODUCTION & BACKGROUND
2. MOTIVATION & OBJECTIVES
3. OO-COMPONENT APPROACH &

APPLICATIONS
4. COMPONENT DEPLOYMENT &

MANAGEMENT STRATEGY
5. DISTRIBUTED ARCHITECTURE & COTS

IMPLEMENTATION

6. PROTOTYPED APPLICATION & RESULTS
7. LESSONS LEARNED

8. ACKNOWLEDGMENTS
9. CONCLUSIONS
10. REFERENCES

1. INTRODUCTION & BACKGROUND

Distributed computing allows modern software structure to
occur across distributed networks in an increasingly flexible
and effective manner. Software component technology
allows distributed application pieces to flexibly be
pluggable, reused, inter-operate, and evolve over time.
Figure 1 shows the evolution of network infrastructure
technology support for distributed computing and how the
trend has gone from proprietary methods to continuous
improvements using open standards. The focus here is to
extend beyond taking advantage of object-oriented
techniques to a more advanced open methodology for
developing and executing software systems using the
components concept (some areas still being researched and
developed for standardization).

No Network Infrastructure Network Infrastructure
(proprietary) (open)

ComponentsObjectsFunctionsPrivate

COM/DCOM

JavaBean/RMI

CORBA (3.0)
Component
Model - CCM

XML (data format)

DCE (1.1) DCE (1.2)

Socket CORBA (1&2)

RPC

DecNet

SNA

AppleTalk

(none)

(custom)

(new)

(new)

Figure 1 - Distributed Computing Technology Evolution

The ReUse/OO-Component Team focused on providing
advanced research solutions to software architectures via
reusable infrastructure development and prototypes using
new technology and using these solutions to mitigate risk

during future task insertion. Many solutions are centered
around the use of an advanced object-oriented distributed
systems approach, currently object-oriented component-
based software in particular, with actual code, templates,
supporting framework elements, and sample application
prototypes provided.

Two separate, but related component studies were
conducted by the ReUse/OO-Component Team based on 2
different open specification models and were as follows:
1) Microsoft’s Component Object Model (COM)

• Refer to Reference [2] for details.
• Used only interface specification or structuring

technique for packaging components, done in a C++
and UNIX development environment.

• Took JPL developed proprietary application code
based on a Distributed Computing Environment
(DCE) infrastructure and repackaged it into
components with generic Application Program
Interfaces (API) to hide the communication layer
from developers or user subsystems.

• The goal was to develop a tiered architecture
centered around a component approach to allow for
possible swapping of the underlying communication
layer (and maybe other services) with other
technology while keeping the same API’s.

2) COTS-based CORBA model
• ** Focus study of this paper.
• Took same application used in the COM study, but

replaced both propriety development and DCE with
CORBA-based infrastructure service components
while maintaining a easy mapping to the same API’s
used by existing subsystems, now hiding CORBA
from the service users.

A more detailed scope of areas to be covered while
discussing the above mentioned second model study
include:
• Stating the motivation for and benefits of COTS-based
component approach to software systems development,
along with the objectives of the prototyped demonstration.
• Briefly describing the what is meant by an object-oriented
component approach to development and giving examples
of scientific applications which can take advantage of the
components approach.
• Addressing the key support environment elements desired
to make up a comprehensive component deployment and
management strategy when developing systems using
application configurable components.
• Providing a brief description of Common Object Request
Broker Architecture (CORBA) standard and how it is being
used in this study.
• Discussing a completed and demonstrated application
prototype of portions of the NASA Deep Space Network
(DSN) Monitor & Control Infrastructure Service (MCIS)
using ACE-TAO (a COTS implementation of CORBA
features).

• Discussing lessons learned from using CORBA ACE-
TAO (pros and cons) as the underlying communications
infrastructure and service provider to the applications.

2. MOTIVATION & OBJECTIVES

The purpose behind this COTS-based OO-component
approach was to focus on a faster way for developing
reusable common software services and supporting
infrastructure which would improve on software
engineering methodology by creating a framework or
roadmap with greater, more flexible benefits for most
distributed system development and their life cycle. Rapid
development or early prototyping using this approach with
existing applications give an opportunity for proof-of-
concept and risk mitigation when using new technology for
future application developments or upgrades. This is done
by taking advantage of object-oriented techniques such as
software design pattern frameworks, code wrapping, class
inheritance/encapsulation, etc. in addition to coupling
object-oriented techniques with software component
structuring concepts to form reusable, configurable common
services based on open standards. The OO-component
approach provides for maximum use of proven COTS for
added flexibility in product selection, upgrades, and
complete or partial switch-overs. There is no inter-mingling
of the COTS product inside the application-specific code.

There are several key areas or standards were addressed
dealing with advanced technology capabilities; however,
only certain ones were demonstrated in this effort. The
following is a list of research techniques/technologies along
with identification (*) of the one used in the prototype
addressed in the results of this paper:
• OO (C++) code wrapping techniques and design patterns
for reusable API’s (*)
• distributed COTS-based services [CORBA (*), Java/RMI,
COM/DCOM]
• CORBA Component Model (CCM), packaging structure
for s/w services (similar to open spec on Component Object
Model - MS/COM)
• Extensible Markup Language (XML) for universal data
exchange (considered as future supporting option)
• Unified Modeling Language (UML) for design process
and documentation (*).

There are many traditional problems encountered in the
development and maintenance or upgrade of software
systems which contribute to the motivation or need for a
new approach to engineering these systems. For example,
within the NASA’s DSN, at least 60% of its subsystems
have common software functions (often different versions or
implementations of the same functions) and a lack of
common infrastructure to support objectives for improved
development, maintenance and inter-operability. Some
typical examples of problems are as follows:
• too much customization and lack of straight-forward
reusability - end up redoing or modifying

• complex system assembly and delivery
• lack of standards leading to better coordination of
development systems and phases for complex applications
• lack of inter-operability among heterogeneous and
scaleable systems or system components
• difficulty in coping with change which affects re-test and
redelivery of many affected legacy subsystems
• need to reduce development and maintenance cycle time
and cost (faster/better/cheaper, f/b/c)
• need to integrate legacy, COTS, or other technologies
over time
• lack of runtime flexibility
• etc.

3. OO-COMPONENT APPROACH &

APPLICATIONS

The component software approach promotes more advanced
object-oriented component-based techniques and
architectures into software development. It provides a
standard framework or infrastructure for building and using
software components to save time and money.

The top portion of Figure 2 gives a pictorial view of the goal
to move from a traditional monolithic type application
composed of a single binary file to applications which can
be easily configured (static or dynamic, local or remote)
from a library of components providing common services
across applications. Applications would reduce their focus
to developing custom or application-specific components to
plug-and-play with generic or common services
components.

• Cross comparison between S/W and H/W architectures
Software Component Hardware Component

================== ==================
1) Component I/F (Definition) 1) Component pin layout & ops spec
2) OS dynamic lib loading (Mechanism) 2) Circuit board socket
3) Library routines (OO S/W component) 3) H/W component (CPU, mem chips, ...)

Monolithic Application

Single
Binary

File

(Old Technology)

Proj.-1 Application

Proj.-2 Application

Remote Machine

Component Library

(New OO-Component Technology)

Component A

Component A

New Component C

Component C

Component B

Component B

Component D

Component C

Component B

Component A

Component D

New Component C

Remoting D

network

Custom Component

Custom Component

Component E

(components can connect at run-time)

OO-Component Architecture Concept

Figure 2 - OO-Component Architecture Concept

The objective is to design application software from a set of
functional software components. Each software component
has a well-defined interface that encapsulates a distinct
operation. This is a similar process as to constructing a
hardware circuit board with the hardware architecture
equating to the elements of a software architecture using
components (see bottom portion of Figure 2).

A summary of key benefits to using the OO-component
software approach, which should lead to long-term cost and
time savings through-out various life-cycle phases (up-front
initial costs may be higher than ...), include the following:
1) inter-operability
2) extensibility
3) easy reuse
4) easy assembly
5) run-time flexibility
6) enforce design standards
7) development flexibility.

A COTS-based OO-component approach can allow
application configurations to be produced quickly and can
result in higher quality, more reliable software (** if the
COTS capabilities are well understood and integratable).

This approach also provides for prototyped reusable generic
object-oriented software components for common services,
both communications and application services. Figure 3
shows examples of scientific applications, using a tiered
architecture or methodology, which can take advantage of
the component approach. A few application-specific
examples include monitor and control (focus of this study
and currently demonstrated), spacecraft rules subsystem for
planning, and spacecraft modeling (future projections). The
middle tier of the architecture would allow development of
enabling support components (such as expression evaluators
or user defined functions) and the lower layer would provide
communication service components (which can be based on
simple protocols like TCP/IP to complex ones like CORBA)
for the applications.

Potential ReUsable Generic
Communication & Application
Component-based S/W Services

• • •

GLUEware

Symbol
Table

Generic I/O Services Components

MON-1DIRE CTIVE EVE NT

• Infrastructure
 (OO-Framework)
• OO-Components
• Communication
 I/F Standard

(DCE, DCOM , CORBA, TCP/IP, ...)

Monitor
&

Cont rol

S/C
Rule
SS

(Plan'n)

User-
Defined
Function

Con text
Variable

• • •

• • • • • • • • •

• Generic User Application
 Services
• OO-Component Technology
• Vision of Scripting Major
 Portion of S/W Syst ems

S/C
M odel'n

Task Boundary

Generic Applicat ion Services Components

(GLUEware - Gateway Linking User Environments)

(Enabl ing Support S/W)X ML
(new)

Expression
Evaluator

P UB/SUB

Figure 3 - Component-based Applications using Tiered
Architecture

Utilization of the object-oriented component technology
approach (with or without COTS) for system development
and software reuse will apply to several areas within JPL,
and possibly across other NASA Centers, for example:
• NASA/JPL Telecommunications & Mission Operations
Directorate (TMOD) Deep Space Network (DSN)

• NASA/JPL Flight Software - Ex., Mission Data Systems
(MDS)
• Other technology and applications programs - Ex.,
NASA/JPL Technology & Applications Programs (TAP)
such as the Intelligent Synthesis Environment (ISE) for
Distributed Modeling, Department of Defense (DOD)
programs such as Defense Information Systems Agency
(DISA) Defense Information Infrastructure (DII), etc.

4. COMPONENT DEPLOYMENT &

MANAGEMENT STRATEGY

Component-Based Development (CBD) is the new
paradigm for designing modular applications with reusable
software entities. An example of components are COM
components, Enterprise Java Beans, and to some degree
CORBA Objects (see CORBA Component Model). CBD
offers the promise of reducing cycle time and improving the
quality of delivered applications, by building applications
with modules with a well defined interface, providing a well
defined service.

The goal of a Component Deployment & Management
Strategy (CDMS) is to specify a design for a repository of
components so large scale systems can be constructed. This
is very good for standardization and will help solve the
problem of continuous reinvention (i.e. just download the
required component).

In order to implement CBD effectively, two major
challenges must be solved:
 1) A solution for storing the components in an accessible
repository
 2) Deploying the components to local or remote sites
(developers, applications etc.)

The required support environment and the procedures for
developing new software components and component
deployment are addressed via the Object Component
Deployment and Management Strategy (CDMS). Issues
related to developing components, accessing the
components repository or database during development
and/or execution, component security, and needs for a
component-capable configuration management (CM)
system verses traditional are taken into account.

Figure 4 depicts the key elements needed to support the
development of a distributed component-based system
(based on both studies). CORBA was found to have
extensive specifications providing most of these key
elements (or support services); thus, reinforcing the use of
an open standard COTS to avoid custom or proprietary
efforts.

Developer
Environment

Component
Editing

Component Registion,
Naming Services,
& Config. Mgnt.

Component Repository
Manager

component
template

files

 Local
Components

Component
Registry

Runtime Loader

SecurityFTP/ORB/...

Component

 - globally available fundamental services, e.g. Naming
Service, Event Service, and Notification Service
• Common Facilities
 - higher level services (e.g. User Interface) and domain-
specific tasks (e.g. Distributed Simulation).

As depicted by Figure 5 and discussed below, CORBA
services provide similar functions as those developed in-
house by JPL (but prior to this study effort) for the same
prototyped application discussed in the next section.

Object Request Broker (ORB)

Object Services

naming event ….

publisher supplier …. ….User I/F

Application Objects Common Facilities

Figure 5 - CORBA (OMG Ref. Model Archit.)

The COTS implementation of CORBA specifications used
in this particular study is ACE-TAO. ACE stands for the
Adaptive Communication Environment and TAO stands for
The ACE ORB. Further descriptions of ACE-TAO is as
follows:
1) ACE

• An open-source object-oriented (OO) framework
• Targeted for developers of high-performance and

real-time communication services and applications
• Implements many core design patterns for concurrent

communication software
2) TAO

• An open-source, standard-based CORBA middleware
framework

• A real-time high-performance ORB
• Built by applying the patterns and components in the

ACE framework.

TAO services used for developing COBRA-based Monitor
and Control Infrastructure Services (explained in next
section):
1) TAO’s Naming Service maps names to object
references:

• It implements OMG Naming Service specification
• Clients can use meaningful names for objects (ex.,

application subsystem names)
• Clients can use different implementation of an

interface w/o changing the source code
• Communication between subsystems can be easily

handled by this service.
2) TAO’s Real-Time Event Service provides support for
decoupled communications between suppliers and
consumers:

• It implements basic OMG Event Service push model,
plus features such as event filtering, event
correlation, real-time event scheduling, etc.

• Events can be filtered based on the event type and
source id.

6. PROTOTYPED APPLICATION &

RESULTS

 The application prototype completed and demonstrated
included portions of the NASA Deep Space Network (DSN)
Monitor & Control Infrastructure Service (MCIS) task using
CORBA ACE-TAO. Note that MCIS is an existing task,
which went from a DCE to socket-based implementation as
part of the Network Control Project upgrade efforts, and
was chosen for this prototyping study in order have actual
operational requirements to gage the COTS OO-component
approach results against. MCIS provides monitor data
services (ex. publish/subscribe), monitor control services
(ex. event notification, directive/response, or configuration
change notice), and functional address or naming services
between subsystems within the DSN. The M&C services
prototyped and demonstrated included only the
publish/subscribe and naming services.

 In Figure 6, a high-level overview of the prototyped
application architecture is given for the publish/subscribe
monitor services relative to a multiple instances scenario.
Here, the Monitor Data Server (MDS) collects data from
various subsystem publishers (producer in CORBA
terminology) and distributes this data upon request to
various other subsystems (subscribers or consumers in
CORBA terminology). A publisher can be a subscriber and
vice versa.

Publisher

(Producer)

MCIS

Server

Name Service

Subscriber
(Consumer)

CALL BACKS

Subscriber
(Consumer)

Publisher

(Producer)

Subscriber
(Consumer)

CALL BACKS

(Multiple Pub/Sub Instances Scenario)

MCIS - Monitor & Control Infrastructure Services

 Figure 6 - DSN MCIS Pub/Sub Architecture Summary

 In Figure 7, the application structure or configuration using
CORBA ACE-TAO is depicted. Basically, the CORBA
environment is wrapped to hide it from the developer or
user of the MCIS services which provides for a cleaner
MCIS API (i.e., existing subsystems use existing API
mapped to the new underlying CORBA supporting

infrastructure or framework). Thus, the application
developer of user subsystem(s) can operator, in this case in a
pure C++ and TCP/IP environment, without having to know
the rigors of CORBA ACE-TAO. ***The team used ACE-
TAO Real-Time Event Service (which should be replaced
also by Notification Service) as the backbone to build the
MCIS publish/subscribe framework.

Pub/Sub Interfaces
Summary

R/T
Event Service

Application 1 Application 2

Consumer

IDL
IDL

Supplier

 Publish
(MDS data item) Subscribe

Naming Service
SubFuncAddrPubFuncAddr

MDS_file

CMonData* =
 MDParser(MDS_file)

CORBA Environment

Pure C++ &TCP/IP

Parser

Callback

Code wrapped
to hide CORBA
and provide
cleaner MCIS API
(Design Pattern)

 Figure 7 - M&C Pub/Sub Common Services using CORBA-

based ACE-TAO

 In Figure 8, the COTS versus custom implementation view
of the development is shown for the publish/subscribe
services (which is only a small subset of the complete MCIS
functions). Estimated calculations, which will vary
depending on project/coding standards, show that custom
development was less than 1% of the total lines of code
making up these services across server, consumer, and
supplier elements using CORBA ACE-TAO as the
underlying service infrastructure. [Note on code
comparisons: Team developed = 1541 loc (to use with
ACE/TAO), ACE/TAO loaded package = 391907 loc (can
be stripped to reduce), JPL custom MCIS socket version =
34109 (no CORBA infrastructure).]

In Figure 9, the CORBA ACE-TAO MCIS application test
configuration utilizes a sample subset of typical DSN
subsystems which use the underlying Publish/Subscribe
services being prototyped. Basically, the combination of
Naming and Real-Time Event Services are configured to
operate by providing the equivalent of Publish/Subscribe
MCIS services between the DSN subsystems [such as
Command Control Processor (CCP) and the Ground Comm
Facility (GCF) Monitor Processor (GMP)] and execution or
data marshaling is carried-out via the Network Monitor &
Control (NMC) subsystem.

Event
Channel

Naming
Service

ec

ORB
Naming
Client

poa

Servant/
Consumer

Consumer

ec

ORBNaming
Client

poa

Servant/
Supplier

Supplier

Consumer_Imp Supplier_Imp

Supp
Proxy

Consumer
Proxy

Qos Qos

Parser

(MDSdata)

Note:

Customized components

TAO-provided components

 Figure 8 - CORBA Components in MCIS Implementation

CCP

NMC

GMP

LAN

CORBA MCIS

CORBA MCIS

CORBA MCIS

TAO R/T
Event Server

TAO
Name Server

NMC - Network Monitor and Controller Subsystem
GMP - GCF Monitor Processor Subsystem
CCP - Command Control Processor Subsystem

- applications that run on the same or different hosts
- TAO services that run on the same or different hosts

Figure 9 - CORBA MCIS Prototype Test Configuration

A summary of achievements of the COTS-based OO-
component Monitor & Control Infrastructure Service
implementation are as follows:
• Used OO-component approach to show flexibility in

system development
• Showed CORBA information hiding
• Showed portable APIs across infrastructure to support

changes
• Demonstrated COTS swapping (DCE, ACE/TAO)
• Gained experience in migrating comm. infrastructure

from DCE MCIS to Socket MCIS and now to CORBA
MCIS

• Found limitations of ACE/TAO real-time Event Service
(some of which have been recently solved in the
Notification Service).

7. LESSONS LEARNED

The challenges of developing efficient, robust, extensible
concurrent applications is difficult. Distributed computing
addresses complex topics which are not easily solved.
These complex areas are less problematic or not-relevant for
non-concurrent, stand alone applications.

Some of the lessons learned from using CORBA and the
ACE-TAO implementation of CORBA are briefly discussed
here in terms of a summary of pros and cons. Table 1 gives
a brief listing of key lessons learned using the CORBA
standard and Table 2 gives a brief list as a result of using the
ACE-TAO implementation of CORBA.

Table 1 - Lessons Learned (Pros & Cons of CORBA)
 PROS of CORBA

• CORBA is a platform independent

distributed computing solution. It is a

standard - http://www.omg.org

• CORBA IDL (Interface Definition Language)

defines a language independent

specification, as well as language mappings
for most of the major languages.

• CORBA provides many tools to solve very

many disparate system engineering
problems.

• There are many ORB implementations -
Compared to DCE, where there has only

been one (Transarc) vendor.

• CORBA allows you 100% leverage of your
legacy systems, so old code can be

encapsulated under IDL interfaces.

• CORBA allows integration of other

Component Models such as EJB and COM.

• CORBA provides many standard services
out of the box. Traditionally at JPL, tools

and services have been developed to

support distributed computing applications.

• CORBA rapidly accelerates the

development time for complex applications.

E.g. this demo took less than 2 months2 months to
code.

• CORBA provides an Interoperable Naming Interoperable Naming

Service (INS) Service (INS) which automates the object
name mapping.

• CORBA provides an Event or Notification Event or Notification

ServiceService - Note under DCE, JPL created

 CONS of CORBA

• There is a very steep learning curve with

CORBA. It requires strong understanding

C++ and IDL.

• Requires understanding distributed

computing paradigms; e.g. pub/sub

remote procedure calls, etc.

• CORBA assumes you are familiar with

OOP principles such as polymorphism,
abstraction, etc.

• Not all ORBs are created equal! - Many

ORBs do not support the latest CORBA
versions (versions 2.3 - 3.0).

• Commercial ORBs tend to be expensive
> $10,000.

• Steep learning curve.

•Configuration of systems may be

challenging (language compiler versions,

OS versions, exception handling, etc).

• Configuration of the ORB is non-trivial

(specifically configuring services), due to

non-standard implementation across
COTS.

• Requires an understanding of dynamic

memory issues and dynamic types (_var
types, type any).

• Full implementation of services is not
guaranteed in all COTS.

Table 2 - Lessons Learned (Pros & Cons of ACE-TAO)
 Pros of ACE-TAO

• The ACE-TAO ORB is open source so
debugging is simplified by the scrutiny of
many users.

• ACE-TAO provides very good debug-level
messages, so developers can easily identify
problems.

• ACE-TAO implements many of the CORBA
Services and even extends them (real times
services, etc).

• There is a large user base in the scientific
and business community, and lots of user
feedback, and a very active mailing list.

• Lots of direct support from the DOC team
at UCI and Washington University.

• In developing our applications, the
performance was comparable to
applications developed using DCE (in our

small testbed). I.e., no noticeable
performance degradation.

• The Name Service is easily configurable
and provides a novel way for clients and
servers to “discover” each other.

• The Event Service is also very easy to
configure.

 Cons of ACE-TAO

• System requirements are large and involve
sys-admin assistance (compilers, OS upgrades,
etc).

• Large disk footprint > 2 Gigs !! It forced team
to obtain a new disk drive.

• ACE-TAO make-file rules to buildACE-TAO
components can be complicated.

• Though ACE-TAO supports many CORBA
services, it may not fully implement them, or
may provide a non-standard service.

• Limited documentation - The documentation
assumes knowledge of CORBA.

• The Event Service is light-weight. Recently
received full Notification implementation is a
plus.

• Both the Event and Name Service may leave
behind ghosts when killed (i.e., dead processes
showing up as active), which can interfere with
a new Service.

JPL may be less prepared to create and maintain in-house
infrastructure service solutions for distributed computing
across projects and/or organizations. Developing in-house
solutions is the “wrong-way” to go for many reasons
(developers leave, documentation, debugging, etc.).

The scope of distributed computing is too large for JPL to
attempt to try and create any solutions. JPL’s focus is on
developing and executing spacecraft missions. Point -
shouldn’t try to create what you can already buy/download!

The correct way to approach distributed computing within
NASA/JPL is by adopting open standards. Open standards
like CORBA address all areas of complexity that arise in
interconnected systems. It is this complexity that forces the
need for standards. Not adopting open standards leads to
continuous reinvention.

Some sources of complexity created when ad-hoc systems
are (re) invented in-house include:
• System latency problems
• Questionable system reliability
• How to synchronize systems, methods
• Deadlocks and race conditions
• Lack of software portability
• Lack of software scalability
• Poor reentrant, type-safe and extensible system call

interfaces
• Inadequate debugging and lack of distributed program

analysis tools
• Mysterious errors … “gremlins”, from errors that are not

well understood.

8. ACKNOWLEDGMENTS

Special acknowledgment is given for the significant
technical contributions made by the software engineering
and prototype development team. This team was composed
of Judy Yin, Amalaye Oyake, and Chialan Hwang who
successfully prototyped and demonstrated M&C publish,
subscribe, and notification service functions within the Deep
Space Network (DSN) using this COTS-based OO-
component approach. Also, thanks is extended to Chaw
Hung for providing system engineering and DSN domain
knowledge support. All individuals named, including paper
author whose role was task manager and system engineer,
composed the ReUse/OO-Component Team.

9. CONCLUSIONS

Industry and gradually NASA/JPL are moving towards
distributed computing infrastructure standards and CORBA-
based is currently the most common. With COTS-based
infrastructure services (or middleware), system growth and
migration can be achieved more effectively and can easily
incorporate other services as needed/available (ex., CORBA
security services). The COTS-based OO-component
approach to software system development promotes
reusablilty and allows adjustments or changes along with
technology trends.

10. REFERENCES

The following are references use to support this work:

[1] Doug Schmidt, “Patterns and Frameworks for
Concurrent Network Programming with ACE and C++”,
URL at http://www.eng.uci.edu/~schmidt.

[2] Laverne Hall, C. Hung, & I. Lin, “NASA JPL
Distributed Systems Technology (DST) Object-Oriented
Component Approach for Software Inter-operability and
Reuse”, SCI/ISAS’99 - RACDIS’99, Orlando FL.

[3] Object Management Group (OMG) document, The
Common Object Request Broker: Architecture and
Specification, Vol. I & II, revised February 1998.

[4] OMG document, CORBAServices: Common Object
Service Specification, Vol. I & II, updated December 1998.

[5] OMG document, CORBAFacilities: Architecture and
Specification, updated 1998.

[6] Doug Schmidt, “TAO Developer’s Guide”, Distributed
Object Computing Group at Washington Univ. in St. Louis
MI, Object Computing Inc. (ociweb.com), 1999.

[7] Doug Schmidt, Nanbor Wang, and David Levine,
“Optimizing the CORBA Component Model for High-
Performance and Real-time Applications”, Middleware
2000 Conference, New York, April 2000.

[8] Stanley B. Lippman & Jose’e Lajoie, C++ Primer -
3rd Ed., Addison-Wesley, 1998.

Laverne Hall has maintained a
career in systems engineering and
is currently the Technical Group
Supervisor for the Distributed
Computing & Systems
Engineering Group within the
Mission Software Systems Section
at the Jet Propulsion Laboratory
(JPL). She serves on the
executive board of the National
Council of Black Engineers and
Scientists (NCBES) and is an
instructor of mathematics at L.A. Southwest College. She
has written, presented, and published several papers in the
areas of algorithm development and system architecture
modeling & simulation (both for satellite-based onboard
computing and ground-based processing systems), object-
oriented component-based approach to software reuse, and
is currently working to promote using this technology
approach to software systems development at JPL. Laverne
received a BS in Applied Mathematics with a minor in

Computer Science from Tuskegee University and a MS in
Computer Engineering from the University of California at
Los Angeles (UCLA).

ReUse/OO-Component Team-Members

 Shyuan-Ju Yin, MS(CS) Amalaye Oyake, BS(C&SE)

 Chialan Hwang, MS(CS) Chaw-Kwei Hung, PhD(EE&CS)

